# Technology Bulletin

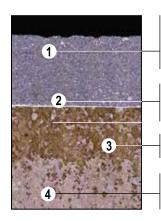
# Standard Conforma Clad<sup>™</sup> Tungsten Carbide Formulations

# **Engineering Formulas**

Kennametal has compiled over 20 years of scientific testing to develop three standard tungsten carbide cladding formulas to protect your equipment from multiple modes of wear, including abrasion, erosion, and corrosion. Our engineers evaluate components and their operating environments in order to recommend a standard cladding formula, or create a custom cladding to meet your specific requirements.

Our unique brazing process combines the hardness of tungsten carbide with the corrosion resistance of nickel chrome boron to create a protective barrier with unmatched wear-resistant properties. With a metallurgical bond strength in excess of 70,000 psi, our cladding is extremely resilient to chipping, cracking, and flaking.

# **Cladding Specifications**


| Cladding Composition (Weight Percentage)           |        |        |        |  |  |  |  |
|----------------------------------------------------|--------|--------|--------|--|--|--|--|
|                                                    | WC 200 | WC 210 | WC 219 |  |  |  |  |
| Tungsten Carbide*                                  | 62%    | 55%    | 48%    |  |  |  |  |
| Nickel                                             | 30%    | 34%    | 39%    |  |  |  |  |
| Chromium                                           | 6%     | 7%     | 8%     |  |  |  |  |
| Other                                              | 2%     | 4%     | 5%     |  |  |  |  |
| Total carbide loading from other carbide formation | 68%    | 66%    | 62%    |  |  |  |  |

<sup>\*</sup>Tungsten Carbide (WC) includes cobalt-bonded WC.

| Cladding Properties                       |         |         |         |  |  |  |
|-------------------------------------------|---------|---------|---------|--|--|--|
|                                           | WC 200  | WC 210  | WC 219  |  |  |  |
| Density (lb/in³)                          | 0.44    | 0.42    | 0.40    |  |  |  |
| Thermal Conductivity<br>(BTU in/h•ft²•°F) | 230     | 200     | 170     |  |  |  |
| Metallurgical Bond Strength (psi)         | >70,000 | >70,000 | >70,000 |  |  |  |
| Porosity                                  | <3%     | <3%     | <3%     |  |  |  |
| Rockwell Hardness (HRC)**                 | 64–70   | 60–66   | 56-62   |  |  |  |

<sup>\*\*</sup>Cladding is a composite of tungsten carbide particles dispersed in a nickel-based alloy matrix. The extremely hard carbide particles, with a Vickers Diamond Pyramid Hardness of about 2000 DPH<sub>Sop</sub> [1865 DPH<sub>Sop</sub> is equivalent to 80 Rockwell C Hardness (HRC)], are surrounded by a two-phase matrix (300–800 DPH<sub>Sop</sub>, equivalent to 30–64 HRC). Because of the heterogeneous structure of the cladding, direct Rockwell hardness measurements are an average of the hard particles and matrix and are not representative of the individual components of the composite.

# **Cladding Photomicrograph**



#### Cladding

Dense tungsten carbide loading with uniform carbide distribution: high wear resistance with predictable wear rates and continuous heat transfer

 $\textbf{No interconnected porosity}: \ \text{superior corrosion and impact resistance}$ 

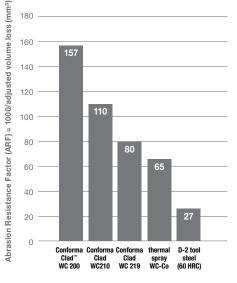
#### **Bond Line**

True metallurgical bond (>70,000 psi) with high interparticle bond strength: provides unsurpassed strength and prevents chipping, flaking, and check-cracking

#### **Diffusion Zone**

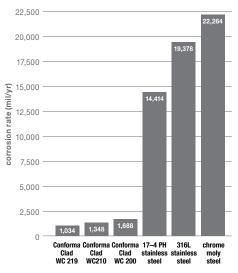
Minimal dilution: substrate retains uniform properties in diffusion zone

#### Substrate


**Heat treatable**: can be heat-treated after cladding process to restore substrate's mechanical properties

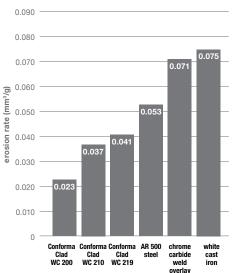





# **Performance Data**

# **Dry Sand Abrasion Test (ASTM G65)**




# **Corrosion Test (ASTM G31)**

10% Hydrochloric Acid at 212°F (100°C)



# **Erosion Test (ASTM G76)**

45° Impingement Angle, 83 m/s, Alumina <63 micron



Up To 3x Better

Erosion Resistance vs. Chrome Carbide Weld Overlay

**Up To 2.4x Better** Abrasion Resistance vs. Thermal Spray Up To 14x Better Corrosion Resistance vs. Stainless Steel

# **Cladding Properties**

| Properties                     | Kennametal | Thermal Spray   | Weld Overlay | Wear Tiles | Plasma Spray |
|--------------------------------|------------|-----------------|--------------|------------|--------------|
| Bond Strength                  | Very High  | Very Low        | High         | Low        | Low          |
| Complex Geometries             | Yes        | No              | Difficult    | Difficult  | No           |
| Abrasion Resistance            | Very High  | Moderate        | High         | Very High  | Moderate     |
| Erosion Resistance             | Very High  | Low to Moderate | Low          | Low        | Low          |
| Corrosion Resistance           | High       | Low             | Low          | Low        | Low          |
| Impact Resistance              | Moderate   | Low             | Moderate     | Very Low   | Low          |
| Oxide Level                    | Low        | High            | Low          | Low        | High         |
| Temperature Resistance         | High       | Moderate        | Low          | Very Low   | Moderate     |
| Resists Multiple Modes of Wear | Yes        | No              | Yes          | No         | No           |

# **CONTACT US**

Order Support: k-nalb.cs@kennametal.com | +1 888 289 4590

Kennametal Conforma Clad 501 Park East Blvd. New Albany, IN 47150 USA

