Sold in pkg. of 0
Workpiece Materials
Features and benefits
- Gewindeausführung gemäß British Standard Whitworth
Machine Side
Workpiece Side
Grades
-
KC610M
Beschichtetes feinkörniges Hartmetall mit harter PVD-Beschichtung (TiCN-TiN), besonders geeignet für sehr verschleißfeste Anwendungen. Nur mit Kühlschmiermittel oder mit Minimalmengenschmierung (MQL) verwenden.
P SteelS High-Temp AlloysK Cast IronM Stainless Steel -
KC620M
Coated carbide grade with a PVD coat (TiN). Coated carbide grade with a PVD coat (TiN). KC620M is suitable for machining cast iron, non-ferrous material, Aluminum alloys. This grade is suitable for both wet and dry machining. suitable for machining cast iron, non-ferrous material, aluminum alloys. This grade is suitable for both wet and dry machining.
-
KC635M
TiAlN-beschichtetes Hartmetall. KC635M ist eine Hochleistungssorte für höhere Geschwindigkeiten und ist die erste Wahl für nicht rostende Stähle. KC635M zeichnet sich besonders durch eine hohe Härte und Verschleißfestigkeit aus. Diese Sorte ist für das Schneiden von harten Werkstoffen geeignet (bis zu 65 HRC).
P SteelH Hardened MaterialsK Cast IronM Stainless Steel
right-hand thread... conventional milling | left-hand thread... conventional milling |
right-hand thread... climb milling | left-hand thread... climb milling |
right-hand thread... conventional milling | left-hand thread... conventional milling |
right-hand thread... climb milling | left-hand thread... climb milling |
cutter | TPI | 48 | 32 | 24 | 20 | 16 | 12 | 10 | 8 | 7 | 6 | 5.5 | 5 | 4.5 | 4.5 | 4 | 4 |
pitch mm | 0,5 | 0,75 | 1,0 | 1,25 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 | 4,0 | 4,5 | 5,0 | 5,5 | – | 6,0 | – | |
cutter diameter (D1) | minimum bore diameter (D) (inches) | ||||||||||||||||
K035TM1RW050-STN10 | .35 | .374 | .394 | .421 | .449 | ||||||||||||
K045TM1RW050-STN11N | .45 | .472 | .492 | .520 | .547 | .571 | |||||||||||
K049TM1RW037LT11S | .49 | .512 | .531 | .559 | .587 | .610 | |||||||||||
K061TM1RW062-STN16T | .61 | .630 | .650 | .667 | .705 | .728 | .768 | ||||||||||
K067TM2RW075-STN11D | .67 | .693 | .717 | .748 | .772 | .787 | .827 | ||||||||||
K075TM1RW075-STN16T | .75 | .776 | .803 | .827 | .850 | .866 | .906 | ||||||||||
K079TM1RW075-STN16N | .79 | .815 | .843 | .866 | .890 | .906 | .945 | ||||||||||
K087TM1RW100-STN16L | .87 | .893 | .921 | .945 | .969 | .984 | 1.024 | ||||||||||
K102TM2RW100-STN16D | 1.02 | 1.051 | 1.079 | 1.102 | 1.130 | 1.154 | 1.193 | ||||||||||
K118TM1RW100-STN27N | 1.18 | 1.209 | 1.236 | 1.260 | 1.291 | 1.319 | 1.362 | 1.441 | 1.535 | 1.654 | 1.772 | 1.890 | |||||
K146TM1RW125-STN27N | 1.46 | 1.496 | 1.520 | 1.555 | 1.591 | 1.614 | 1.654 | 1.732 | 1.830 | 1.929 | 2.047 | 2.185 | |||||
K165TM2RW125-STN27D | 1.65 | 1.701 | 1.724 | 1.772 | 1.811 | 1.831 | 1.866 | 1.929 | 2.047 | 2.146 | 2.268 | 2.401 | |||||
– | 1.38 (UN) | – | – | – | – | – | – | – | – | – | 1.969 | – | 1.843 | – | 1.756 | – | 2.228 |
– | 1.38 (ISO) | – | – | – | – | – | – | – | – | – | 1.969 | 2.102 | 1.673 | 1.969 | – | 2.264 | – |
– | 1.38 (BSW) | – | – | – | – | – | – | – | – | – | 1.961 | – | 1.831 | – | 1.866 | – | – |
workpiece material | Cutting Speed vc SFM | feed rate per revolution (inch) |
KC635M | ||
carbon steels 187 HB | 300–700 | .004–.008 |
carbon steels 187–220 HB | 300–500 | .004–.006 |
alloy steel 200–250 HB | 200–425 | .004–.006 |
alloy steel 250–325 HB | 150–300 | .004–.006 |
stainless steel, austenitic 210 HB | 300–450 | .004–.006 |
stainless steel, martensitic 321 HB | 250–350 | .002–.006 |
stainless steel, ferritic 245 HB | 350–550 | .002–.004 |
cast steel 140 HB | 350–550 | .002–.006 |
cast steel 220302 HB | 225–425 | .002–.004 |
titanium alloys | 200–400 | .001–.003 |
high-temperature (nickel and iron base) | 75–150 | .001–.002 |
high-temperature (cobalt base) | 50–100 | .001–.002 |
cast iron | 250–350 | .002–.006 |
malleable iron | 250–400 | .001–.003 |
workpiece material | Cutting Speed vc m/min | feed rate per revolution (mm) |
KC635M | ||
carbon steels 187 HB | 90–210 | 0,10–0,20 |
carbon steels 187–220 HB | 90–150 | 0,10–0,15 |
alloy steel 200–250 HB | 60–130 | 0,10–0,15 |
alloy steel 250–325 HB | 50–90 | 0,10–0,15 |
stainless steel, austenitic 210 HB | 90–140 | 0,10–0,15 |
stainless steel, martensitic 321 HB | 80–110 | 0,05–0,15 |
stainless steel, ferritic 245 HB | 110–170 | 0,05–0,10 |
cast steel 140 HB | 110–170 | 0,05–0,15 |
cast steel 220302 HB | 70–130 | 0,05–0,10 |
titanium alloys | 60–120 | 0,03–0,08 |
high-temperature (nickel and iron base) | 20–45 | 0,03–0,05 |
high-temperature (cobalt base) | 15–30 | 0,03–0,05 |
cast iron | 80–110 | 0,05–0,15 |
malleable iron | 80–120 | 0,03–0,08 |
cutter | TPI | 48 | 32 | 24 | 20 | 16 | 12 | 10 | 8 | 7 | 6 | 5.5 | 5 | 4.5 | 4.5 | 4 | 4 |
pitch mm | 0,5 | 0,75 | 1,0 | 1,25 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 | 4,0 | 4,5 | 5,0 | 5,5 | – | 6,0 | – | |
cutter diameter (D1 mm) | minimum bore diameter (D) (mm) | ||||||||||||||||
K035TM1RW050-STN10 | 8,89 | 9,50 | 10,01 | 10,69 | 11,40 | ||||||||||||
K045TM1RW050-STN11N | 11,43 | 11,99 | 12,50 | 13,21 | 13,89 | 14,50 | |||||||||||
K049TM1RW037LT11S | 12,45 | 13,00 | 13,49 | 14,20 | 14,91 | 15,49 | |||||||||||
K061TM1RW062-STN16T | 15,49 | 16,00 | 16,51 | 16,94 | 17,91 | 18,49 | 19,51 | ||||||||||
K067TM2RW075-STN11D | 17,02 | 17,60 | 18,21 | 19,00 | 19,61 | 19,99 | 21,01 | ||||||||||
K075TM1RW075-STN16T | 19,05 | 19,71 | 20,40 | 21,01 | 21,59 | 22,00 | 23,01 | ||||||||||
K079TM1RW075-STN16N | 20,07 | 20,70 | 21,41 | 22,00 | 22,61 | 23,01 | 24,00 | ||||||||||
K087TM1RW100-STN16L | 22,10 | 22,68 | 23,39 | 24,00 | 24,61 | 24,99 | 26,01 | ||||||||||
K102TM2RW100-STN16D | 25,91 | 26,70 | 27,41 | 27,99 | 28,70 | 29,31 | 30,30 | ||||||||||
K118TM1RW100-STN27N | 29,97 | 30,71 | 31,39 | 32,00 | 32,79 | 33,50 | 34,59 | 36,60 | 38,99 | 42,01 | 45,01 | 48,01 | |||||
K146TM1RW125-STN27N | 37,08 | 38,00 | 38,61 | 39,50 | 40,41 | 41,00 | 42,01 | 43,99 | 46,48 | 49,00 | 51,99 | 55,50 | |||||
K165TM2RW125-STN27D | 41,91 | 43,21 | 43,79 | 45,01 | 46,00 | 46,51 | 47,40 | 49,00 | 51,99 | 54,51 | 57,61 | 60,99 | |||||
– | 35,05 (UN) | – | – | – | – | – | – | – | – | – | 50,01 | – | 46,81 | – | 44,60 | – | 56,59 |
– | 35,05 (ISO) | – | – | – | – | – | – | – | – | – | 50,01 | 53,39 | 42,49 | 50,01 | – | 57,51 | – |
– | 35,05 (BSW) | – | – | – | – | – | – | – | – | – | 49,81 | – | 46,51 | – | 47,40 | – | – |
1–2: | rapid approach |
2–3: | tool entry along tangential arc with simultaneous feed along Z-axis |
3–4: | helical movement during one full orbit (360°) |
4–5: | tool exit along tangential arc with continuing feed along the Z-axis |
5–6: | rapid return |
1–2: | radial entry with simultaneous feed along the Z-axis |
2–3: | helical movement during one full orbit (360°) |
3–4: | radial exit |
figure A | figure B |
internal left hand thread threading tool workpiece | external thread workpiece threading tool | workpiece threading tool |
1–2: | radial entry |
2–3: | helical movement during one full orbit (360°) |
3–4: | radial exit |
internal thread | external thread |
F1 = fz x Z x n | RPM = | 12 x SFM | |
π x d1 | |||
F1=tool feed rate at the cutting edge (in/min) fz=inch per tooth (feed rate) Z=number of effective inserts in cutter n=rotational speed (spindle RPM) | SFM=cutting speed, surface feet per minute d1=cutter diameter, over insert π=3.1416 |
P1 = F1 + | (F1 x d1) | ||
D | external thread | internal thread | |
P1= program feed rate (in/min) D= major diameter (external thread) D= minor diameter (internal thread) d1= cutting diameter, over insert | tool workpiece |
pitch (TPI) | 24 | 20 | 16 | 12 |
pitch mm | 1,0 | 1,25 | 1,5 | 2,0 |
cutter dia. d1 | minimum bore diameter D | |||
.67 | .748 | .772 | .787 | .827 |
.75 | .827 | .850 | .866 | .906 |
.79 | .866 | .890 | .906 | .945 |
insert IC | a inch (mm) | pitch (TPI) | internal thread | b inch thread length (in) | number of teeth | grade | external thread | b inch thread length (in) | number of teeth | grade | cutter type | ||
catalog number | KC610M | KC620M | catalog number | KC610M | KC620M | ||||||||
32 | STN16 32UN-I | .59 | 19 | STN16 32UN-E | .59 | 19 | |||||||
28 | STN16 28UN-I | .57 | 16 | STN16 28UN-E | .57 | 16 | |||||||
27 | STN16 27UN-I | .56 | 15 | STN16 27UN-E | .56 | 15 | |||||||
24 | STN16 24UN-I | .55 | 14 | STN16 24UN-E | .58 | 14 | |||||||
3/8 | .63 (16) | 20 | STN16 20UN-I | .55 | 11 | STN16 20UN-E | .55 | 11 | STN16 | ||||
18 | STN16 18UN-I | .56 | 10 | STN16 18UN-E | .56 | 10 | |||||||
16 | STN16 16UN-I | .56 | 9 | STN16 16UN-E | .56 | 9 | |||||||
14 | STN16 14UN-I | .57 | 8 | STN16 14UN-E | .57 | 8 | |||||||
13 | STN16 13UN-I | .54 | 7 | STN16 13UN-E | .54 | 7 | |||||||
12 | STN16 12UN-I | .58 | 7 | STN16 12UN-E | .58 | 7 |
pitch (TPI) | 24 | 20 | 16 | 12 |
pitch mm | 1,0 | 1,25 | 1,5 | 2,0 |
cutter dia. d1 | minimum bore diameter D | |||
17,02 | 19,00 | 19,61 | 19,99 | 21,01 |
19,05 | 21,01 | 21,59 | 22,00 | 23,01 |
20,07 | 22,00 | 22,61 | 23,01 | 24,00 |
insert IC | a (mm) | pitch (TPI) | internal thread | b thread length (mm) | number of teeth | grade | external thread | b thread length (mm) | number of teeth | grade | cutter type | ||
catalog number | KC610M | KC620M | catalog number | KC610M | KC620M | ||||||||
32 | STN16 32UN-I | 14,99 | 19 | STN16 32UN-E | 14,99 | 19 | |||||||
28 | STN16 28UN-I | 14,48 | 16 | STN16 28UN-E | 14,48 | 16 | |||||||
27 | STN16 27UN-I | 14,22 | 15 | STN16 27UN-E | 14,22 | 15 | |||||||
24 | STN16 24UN-I | 13,97 | 14 | STN16 24UN-E | 14,73 | 14 | |||||||
9,53 | 16 | 20 | STN16 20UN-I | 13,97 | 11 | STN16 20UN-E | 13,97 | 11 | STN16 | ||||
18 | STN16 18UN-I | 14,22 | 10 | STN16 18UN-E | 14,22 | 10 | |||||||
16 | STN16 16UN-I | 14,22 | 9 | STN16 16UN-E | 14,22 | 9 | |||||||
14 | STN16 14UN-I | 14,48 | 8 | STN16 14UN-E | 14,48 | 8 | |||||||
13 | STN16 13UN-I | 13,72 | 7 | STN16 13UN-E | 13,72 | 7 | |||||||
12 | STN16 12UN-I | 14,73 | 7 | STN16 12UN-E | 14,73 | 7 |
Calculate the feed rates: | |||||
First, find the RPM. | |||||
RPM = | 12 x SFM | = | 12 x 500 | = | 2418 RPM |
π x d1 | 3.14 x .79 | ||||
Next, calculate the feed rate at the insert cutting edge (F1): | |||||
(using the chosen feed per tooth of .004.) | |||||
F1 = | IPT x nt x RPM | = | .004 X 1 X 2418 | = | 9.67 in/min |
Finally, calculate the feed rate at the cutter centerline (F2): | |||||
F2 = | F1 x (D - d1) | = | 9.67 x (1.182 - .79) | = | 3.207 in/min |
D | 1.182 | ||||
Select the thread milling method. | |||||
Climb milling (preferred) see page . | |||||
Calculate the radius of the tangential arc Re: | |||||
Re = | (Ri - CL)2 + R02 | = | (.591 - .02)2 + .6252 | ||
2Ro | 2 x .625 | ||||
Re = | .573333 in. | ||||
Calculate the angle (β): | |||||
β = | 90° + arc sin | Ro - Re | |||
Re | |||||
β = | 90° + arc sin | .625 - .573333 | |||
.57333 | |||||
β = | 90° + 5.17° | = | 95.17° | = | 95° 10' |
Calculate the movement along the Z-axis during the entry approach from point “A” to point “B” (Zα). (NOTE: P = pitch) | |||||
Zα = P (in) x | α° | = | .0625 | = | .0156 in, because α = 90° |
360° | 4 | ||||
Calculate the “X” and “Y” values at the start of the entry approach. | |||||
X = 0Y = -Ri + CL = -.591 + .02 = - .571 in. | |||||
Define Z-axis location at the start of the entry approach. (NOTE: L = length of thread) | |||||
Z = - (L + Zα) = - (.50 + .0156) = - .5156 in. | |||||
Define the starting point. | |||||
Xa = 0 | |||||
Ya = 0 |
CNC Program (Fanuc 11M) | |||
% | |||
N10G90G00G57X0.000Y0.000 | |||
N20G43H10Z0.M3S2417 | |||
N30G91G00X0.Y0.Z–0.5156 | |||
N40G41D60X0.000Y–0.5710Z0. | |||
N50G03X0.6250Y0.5710Z0.0156R0.5733F3.206 | |||
N60G03X0.Y0.Z0.0625I–0.625J0. | |||
N70G03X–0.625Y0.5710Z0.0156R0.5733 | |||
N80G00G40X0.Y–0.5710Z0. | |||
N90G49G57G00Z8.0M5 | |||
N100M30 | |||
% | |||
Ri = | D | Ro = | Do |
2 | 2 | ||
D = minor diameter | Do = nominal diameter | ||
α 90° | |||
Calculate the feed rates: | |||||
First, find the RPM. | |||||
RPM = | 1000 x Vc | = | 1000 x 150 | = | 2387 RPM |
π x d1 | π x 20 | ||||
Next, calculate the feed rate at the insert cutting edge (F1): | |||||
(using the chosen feed per tooth of 0,1mm.) | |||||
F1 = | Fz x Z x N | = | 0,1 X 1 X 2387 | = | 238,7 mm/min |
Finally, calculate the feed rate at the cutter centerline (F2): | |||||
F2 = | F1 x (D - d1) | = | 238,7 x (3020) | = | 79,57 mm/min |
D | 30 | ||||
Select the thread milling method. | |||||
Climb milling (preferred) see page . | |||||
Calculate the radius of the tangential arc Re: | |||||
Re = | (Ri - CL)2 + RO2 | = | (150,5)2 + 15,8752 | ||
2 x RO | 2 x 15,875 | ||||
Re = | 14,55mm | ||||
Calculate the angle (β): | |||||
β = | 90° + arc sin | Ro - Re | |||
Re | |||||
β = | 90° + arc sin | 15,875 - 14,55 | |||
14,55 | |||||
β = | 90° + 5.17° | = | 95,2° | = | 95° 12' |
Calculate the movement along the Z-axis during the entry approach from point “A” to point “B” (Zα). (NOTE: P = pitch) | |||||
Zα = P (mm) x | α° | = | 1,578 | = | 0,394mm because α = 90° |
360° | 4 | ||||
Calculate the “X” and “Y” values at the start of the entry approach. | |||||
X = 0Y = Ri + CL = 15 + 0,5 = 15,5mm | |||||
Define Z-axis location at the start of the entry approach. (NOTE: L = length of thread) | |||||
Z = (L + Zα) = 12,7 + 0,3945 = 13,0945mm | |||||
Define the starting point. | |||||
Xa = 0 | |||||
Ya = 0 |
Appendix A | |
Derivation of Formulas for Internal Thread Milling | |
Re, β, and X can be found by a geometric analysis of the entry path. | |
This entry path is defined by the tool traveling along a circular path, with a radius of Re about the point C. | |
Re = | (Ri - CL)2 + Ro2 |
2Ro | |
Triangle OAC enables us to simply solve for Re.Note that OAC is a right angle triangle, and that: | |
OA = Ri – CL CA = Re OC = Ro – Re | |
Pythagoras’ law states: OA2 + OC2 = AC2 | |
Replacing actual values, we get: | |
(Ri - CL)2 + (Ro - Re)2 = Re2 | |
Simplifying, we get: | |
Re = | (Ri - CL)2 + Ro2 |
2R0 | |
Find the angle β. | ||||
sin | ||||
= arc sin | ( | Ro - Re | ) | |
Re | ||||
Therefore, β = 90° + arc sin | ( | Ro - Re | ) | |
Re | ||||
Appendix B | |
Derivation of Formulas for External Thread Milling | |
Re, β, and X can be found by a geometric analysis of the entry path. | |
This entry path is defined by the tool traveling along a circular path, with a radius of Re about the point C. | |
Re = | (Ro - CL)2 + Ri2 |
2Ri | |
Triangle OAC enables us to simply solve for Re.Note that OAC is a right angle triangle, and that: | |
OA = Ro – CL CA = Re OC = Re – Ri | |
Pythagoras’ law states: OA2 + OC2 = AC2 | |
Replacing actual values, we get: | |
(Ro - CL)2 + (Re - Ri)2 = Re2 | |
Simplifying, we get: | |
Re = | (Ro - CL)2 + Ri2 |
2Ri | |
Find the angle β. | |||
β can be easily found using the same triangle: | |||
sin β = | AO | = | (Ro + CL) |
AC | Re | ||
β = arc sin | ( | Ro + CL | ) |
Re | |||
problem | possible cause | solution | |
excessive insert flank wear | • Cutting speed too high. | • Reduce cutting speed. | |
• Chip is too thin. | • Increase feed rate. | ||
• Insufficient coolant. | • Increase coolant quantity/pressure. | ||
chipping of cutting edge | • Chip is too thick. | • Reduce feed rate. • Use the tangential arc method of entrance. • Increase RPM. | |
• Vibration. | • Check rigidity. | ||
material build-up on the cutting edge | • Cutting speed too slow. | • Increase cutting speed. | |
• Chip thickness too small. | • Increase feed rate. | ||
chatter/vibration | • Feed rate is too high. | • Reduce the feed. | |
• Profile is too deep (coarse pitch threads). | • Execute two passes, each with increased cutting depth. • Execute two passes, each cutting only half the thread length. | ||
• Thread length is too long. | • Execute two passes, each cutting only half of the thread length. | ||
insufficient thread accuracy | • Tool deflection. | • Reduce feed rate. • Execute a zero cut. |
thread designation | standard designation | tolerance class |
UN | ANSI B 1.174 | 2A/2B |
UNJ | MIL-S-8879A | 3A/3B |
ISO | R262 (DIN 13) | 6g/6H |
NPT | USAS B2.1 : 1968 | standard NPT |
NPTF | ANSI B 1.20.3-1976 | standard |
BSW | B.S. 84 : 1956, DIN 259, ISO 228/1 : 1982 | medium class A |
BSPT | B.S. 21 : 1985 | standard BSPT |
ACME | ANSI B1/5 : 1988 | 3G |
PG | DIN 40430 | standard |
TR | DIN 103 | 7e/7H |
STN Series
Materials | Brinell | surface speeds | indexable inserts | |
steel | HB | KC610M | KC635M | feed fz (IPT) |
P1 | 125 | 325–675 | 290–590 | .002–.008 |
P2 | 180 | 290–550 | 290–520 | .002–.008 |
P3 | 225 | 200–425 | 225–375 | .002–.008 |
P4 | 250 | 250–490 | 250–500 | .002–.008 |
P5 | 275 | 250–425 | 250–500 | .002–.006 |
P6 | 325 | 225–350 | 200–325 | .002–.004 |
stainless steel | ||||
M1 | 180 | 325–550 | 375–590 | .002–.004 |
M2 | 250 | 225–450 | 325–450 | .002–.004 |
M3 | 330 | 225–375 | 325–375 | .002–.004 |
cast iron | ||||
K1 | 180 | 200–425 | 325–450 | .001–.003 |
K2 | 220 | 200–390 | 250–325 | .002–.006 |
K3 | 260 | 160–290 | 200–275 | .002–.004 |
non-ferrous | ||||
N1 | 60–100 | 325–820 | – | .002–.010 |
high-temp alloys | ||||
S1 | 200 | 65–140 | 65–130 | .002–.004 |
S2 | 250 | 65–90 | 65–90 | .001–.002 |
S3 | 280 | 50–65 | 50–65 | .001–.002 |
S4 | 350 | 30–50 | 30–50 | .001–.002 |
hardened steel | ||||
H1 | 55HRc | 65–140 | 65–140 | .0004–.001 |