Metallurgical Expert Knowledge on Titanium:

Titanium alloys retain strength at high temperatures and exhibit low thermal conductivity.

Inconel is a superalloy characterized by a unique combination of high temperature corrosion resistance, oxidation resistance, and creep resistance. Superalloys are well suited for use in very extreme heat and chemical environments. Super Alloys have a very poor machinability.

Alpha-Beta (α-ß) Alloys

These alloys feature both a α and ß phase and contain both α and ß stabilizers.The simplest and most popular alloy in this group is Ti6Al4V, which is primarily used in the aerospace industry. Alloys in this category are easily formable and exhibit high room-temperature strength and moderate high-temperature strength. The properties of these alloys can be altered through heat treatment. 

Beta (ß) Alloys

Beta (ß) Alloys Beta (ß) alloys contain transition metals, such as V, Nb, Ta, and Mo, that stabilize the ß-phase. Examples of commercial ß alloys include Ti11.5Mo6Zr4.5Sn, Ti15V3Cr3Al3Sn, and Ti5553. Beta alloys are readily heat-treatable, generally weldable, and have high strength. Excellent formability can be expected in the solution treated condition. However, ß alloys are prone to ductile-brittle transition and thus are unsuitable for cryogenic applications. Beta alloys have a good combination or properties for sheet, heavy sections, fasteners, and spring applications. 

Titanium Structure Blocks (Beta and Alpha-Beta)

Metallurgical Expert Knowledge on Super Alloys:


Keeping the coefficient of friction at a low level is critical to maintain long tool life.
Using proper coolant delivery it will keep temperatures at the cutting edge controlled and ultimately controls process reliability.

Under pressure and direction, the coolant knocks chips off the cutting edges and provides anti-corrosive benefits for the machine tool.

There is a high correlation between the amount of coolant delivered and the metal removal rate.

Coolant Considerations

Use synthetic or semi-synthetic at proper volume, pressure, and concentration. A 10% to 12% coolant concentration is mandatory. Through-coolant for spindle and tool can extend the tool life by four times. An inducer ring is an option for through-spindle flow. Maximize flow to the cutting edges for best results.

At least 3 gal/min (13 liter/min) is recommended, and at least 500 psi (35 bar) is recommended for through-tool-flow.

A high-pressure system reaching up to 150bars is the state-of-the-art recommendation for aerospace alloys turning.

For high volume production, a very high-pressure system reaching up to 350bars of coolant pressure at the tool is recommended.

Tooling Solutions

Ceramic End Mills


You are about to add to your My Solutions page. Do you want to proceed?
Please adjust the following properties from

ISO Catalog Number

ANSI Catalog Number

to find similar products.

The following files are available

Please select a file to download


You should be logged to see your dashboard information
Session expired due to inactivity, please login again
The product/s () you were trying to add to the cart is/are not available, please contact customer service
item(s) successfully added to the cart
View Cart

. Please enter the desired qty for the material(s) you want to include in your promotion or Proceed Without Promotion and only your base materials will be added to the cart.

Minimum quantity should be

SAP Material Number ISO Catalog Number Grade    

Thank you for your registration, pending approval & completion of the registration, your access is currently limited. Full utilization of product search capabilities & collaboration space is available and will remain. Please allow 2 business days for registration completion.

Thank you for your successful registration. You now have immediate access to log in and utilize the site.

You are about to leave the Solution building process.

Are you sure you want to leave?